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Abstract 

Background:  Understanding the factors that influence microbes’ environmental distributions is important for deter-
mining drivers of microbial community composition. These include environmental variables like temperature and pH, 
and higher-dimensional variables like geographic distance and host species phylogeny. In microbial ecology, “specific-
ity” is often described in the context of symbiotic or host parasitic interactions, but specificity can be more broadly 
used to describe the extent to which a species occupies a narrower range of an environmental variable than expected 
by chance. Using a standardization we describe here, Rao’s (Theor Popul Biol, 1982. https://doi.org/10.1016/0040-
5809(82)90004-1, Sankhya A, 2010. https://doi.org/10.1007/s13171-010-0016-3 ) Quadratic Entropy can be conveni-
ently applied to calculate specificity of a feature, such as a species, to many different environmental variables.

Results:  We present our R package specificity for performing the above analyses, and apply it to four real-life micro-
bial data sets to demonstrate its application. We found that many fungi within the leaves of native Hawaiian plants 
had strong specificity to rainfall and elevation, even though these variables showed minimal importance in a previous 
analysis of fungal beta-diversity. In Antarctic cryoconite holes, our tool revealed that many bacteria have specificity to 
co-occurring algal community composition. Similarly, in the human gut microbiome, many bacteria showed specific-
ity to the composition of bile acids. Finally, our analysis of the Earth Microbiome Project data set showed that most 
bacteria show strong ontological specificity to sample type. Our software performed as expected on synthetic data as 
well.

Conclusions:  specificity is well-suited to analysis of microbiome data, both in synthetic test cases, and across multi-
ple environment types and experimental designs. The analysis and software we present here can reveal patterns in 
microbial taxa that may not be evident from a community-level perspective. These insights can also be visualized and 
interactively shared among researchers using specificity’s companion package, specificity.shiny.

Keywords:  Species distributions, Biogeography, Multi-omic data

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
The word “specificity” has uses across multiple disci-
plines. In ecology, and especially for microbes, “specific-
ity” is often used in the context of symbiotic interactions; 
for example the specificity of a parasitic species may be 
the degree to which it associates with a narrow consortia 
of host species [1–3]. In pharmacology and biochemistry, 
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specificity can describe the “narrowness of the range of 
substances with which an antibody or other agent acts” 
[4]. Synthesizing these definitions, we arrive at a general 
concept of specificity, where a feature (e.g. a species) is 
specific to some variable (e.g. elevation) when it occupies 
or is otherwise associated with a limited breadth of that 
variable.

This definition is consistent across multiple variable 
types. For example, a species that is found only across a 
narrow band of elevation, perhaps between 200 and 500 
m above sea level, would have stronger specificity to 
elevation than a species that is found between sea level 
and 1000 m. This is similar to a parasite that is found only 
within a narrow clade of hosts; it has stronger host speci-
ficity than a parasite that is found across a much wider 
phylogenetic range [2]. This concept can be expanded 
even farther, to diversity of some co-occurring feature 
class. For example, to metabolites that co-ocur with bac-
teria in the human gut microbiome (microbes within the 
human gut). Under our definition, a microbe may have 
specificity to a narrow range of metabolomic composi-
tions. Furthermore, specificity as we describe it here, 
is not the same as bipartite network specialization like 
H2′ , d′ , and NODF metrics [5, 6]. Those metrics apply 
to strictly categorical contingency data, for example a 
matrix of observation counts where columns are pollina-
tor species and rows are plant species. Instead, our gen-
eralized specificity approach is best suited to continuous 
data.

Our generalized specificity analysis has several ben-
efits over modeling a microbe’s relative abundance using 
a variable of interest, since specificity analysis has no 
underlying model. First, high-throughput sequencing 
(HTS) microbiome data notoriously contain many zeroes, 
corresponding to the lack of an observation of species in 
a samples. Disregarding the difficulties in modeling such 
data, which can certainly be overcome [7], these data are 
perfect for the “specificity approach”. This is because the 
alternative hypothesis of a specificity analysis (the focal 
species encounters less environmental heterogeneity 
than expected by chance) includes cases where the focal 
species only occupies a limited range of the variable of 
interest, being absent (zero) everywhere else. A further 
consideration in modeling approaches is non-monotonic 
relationships between species and environmental varia-
bles. For example, a species may have specificity to inter-
mediate elevations, so its density function of elevation 
would be non-monotonic, or even multimodal; and that’s 
just one species. Within a HTS microbiome dataset, spe-
cies may be expected to run the gamut of distribution 
shapes and modalities. Variables of interest also present 
their own challenges to modeling, since variables may 
be vectors (e.g. elevation, pH), distance or dissimilarity 

matrices (e.g. geographic distance, beta-diversity), phy-
logenies, or even sample-type ontologies. The generalized 
specificity approach we present here can accomodate 
all of the aforementioned variable types, unlike other 
approaches where the statistics used to understand 
microbe-environment relationships are restricted by var-
iable type. Furthermore, our approach does not produce 
a model, or answer the question “across what range of the 
variable does the species occur”. Instead, we quantify the 
extent to which the species occupies a limited breadth of 
that variable without the need for such a model.

Meaningfully applying this general idea of specificity to 
multiple data types is challenging because of the differ-
ent specificity metrics available to different kinds of data. 
With host phylogenetic data, specificity may be calcu-
lated as phylodiversity [8], or host phylogenetic entropy 
[9], or host richness [10]. However, with other data types 
these metrics are not useful—one cannot calculate phylo-
genetic entropy of elevation, for example. Per our defini-
tion above, specificity must be a measure of the breadth 
(i.e. heterogeneity, diversity) of an environmental variable 
occupied by the focal species. With a variable like eleva-
tion, a naive specificity metric may be as simple as the 
variance in elevation where the focal species is present, 
or weighted variance for a more intuitive approach. How-
ever, such a metric would not be applicable to phyloge-
netic data sets because it is limited to 1-dimensional data 
types (i.e. column vectors). Furthermore, we wanted our 
general idea of specificity to be useful for dissimilarity 
matrices. We found that Rao’s Quadratic Entropy [11–13] 
is a convenient diversity metric that can be applied to all 
abovementioned data, with a modicum of standardiza-
tion (detailed in our “Methods” section).

Here, we present a software package written in R and 
C++ that implements a generalized specificity analysis. 
Our package, specificity, calculates specificity values for 
each species in a sample-by-species matrix. In microbiol-
ogy, this data structure often appears as a table of OTUs 
(operational taxonomic units; a substitute for species) or 
ASVs (Amplicon Sequence Variants; OTUs represented 
by unique sequences after applying a denoiser such as 
DADA2 [14]). We simulated species distributions with 
varying strengths of specificity, and used those simulated 
data to validate our implementation. Our simulations 
were also used to ensure that specificity is not sensitive to 
occupancy (i.e. in how many samples a species appears), 
which is a significant improvement compared to the 
standardized effect size (SES) method [2, 15], and meth-
ods that use un-weighted (presence-absence) species data 
[10]. Our simulations also confirmed that the specificity 
we calculate here is scale-invariant with regard to envi-
ronmental/phylogenetic data, and also to focal species 
abundance data. To illustrate how specificity can be used, 
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we applied our software to four previously-published 
microbiological data sets, each from different environ-
ments: fungi living within the leaves of native Hawaiian 
plants, human gut microbiome bacteria, bacteria living 
within Antarctic glaciers, and the global Earth Microbi-
ome Project data set.

Methods
RQE
We calculate specificity using Rao’s metric [11, 12]. It is 
sometimes abbreviated FDQ for quadratic functional 
diversity, but since we use the same mathematics in a 
non-functional context, here we simply refer to the met-
ric as RQE (Rao’s Quadratic Entropy), similar to the use 
of “QE” by its inventor. RQE is the sum of the element-
wise product of two square matrices (excluding the diag-
onal). In our use, the first matrix (D) is a dissimilarity 
matrix containing differences between samples (Fig.  1). 
For example, in the context of phylogenetic specificity 
these differences are phylogenetic distances (i.e. cophe-
netic distances) between hosts. Samples from the same 
host species have 0 distance. The second matrix (W) con-
tains all pairwise products of weights for the focal spe-
cies. Given a column vector of species weights p from a 
site-by-species matrix (“OTU table”), Wij contains the 
product of the abundances (weights) of the focal species 
at sample i and sample j: pipj . Via D ◦W  (or Dijpipj for 
a single pairwise product; Eq. 1), we weight matrix D to 

up-weight distances between samples where the focal 
species occurred, and down-weight distances between 
samples where the focal species was absent in either. We 
use the term “weights” to describe p because the values 
within could be relative abundances or any other metric 
that describes the importance of a species within a sam-
ple. Conversely, we have chosen to focus this manuscript 
on “species”, but note that p could be a vector of weights 
for any feature (a type of rock, a metabolite, etc).

With RQE, a focal species with strong specificity has 
relatively high weights for low differences. This metric 
was originally developed for phylogenetic distances, but 
here we apply it to many different D matrices, includ-
ing euclidean transformations of 1-dimensional data 
(e.g. pairwise elevational difference), or more com-
plex 2-dimensional data like Bray–Curtis dissimilarity 
between host metabolomic profiles.

As such, a species with “perfect” specificity will always 
have RQE = 0 . For example, consider a focal species 
S that can be found in habitats A, B, C, or D, with mul-
tiple samples collected for each category (Fig.  1). If S is 
only found in samples from habitat A, matrices D and 
W will contain zeroes in opposite positions, resulting in 
RQE = 0 . Note that weights near zero can also act simi-
larly to zero since this is a weighted metric. In this way, a 
focal species can occupy every single sample (all values 
of p are nonzero positive) and still have RQE near zero. 
This is important so that spurious species detections do 
not significantly contribute to specificity. For example, in 
a DNA sequencing experiment, small amounts of con-
tamination may occur during DNA extraction or library 
preparation. The magnitude of that contamination is 
expected to be small compared to the signal in an actual 
sample, but may result in spurious species detections. 
However, because these contaminants would be expected 
to be rare in the sample, their weights would be low in 
samples where they are noise, and high in samples where 
they are signal.

Standardization
While empirical RQE is calculated as described above, 
it must be standardized in order to compare effect size 
between different variables and different species, because 
the metric’s scale is dependent on the scales of D and p. 
Phylogenetic specificity approaches have previously used a 
standardized effect size (SES) approach [2], but we found 
that SES has unfortunate properties when used with our 
generalized approach to specificity. Critically, SES was 

(1)RQE =

i �=j

Dijpipj

Fig. 1  RQE as it applies to specificity. In this example, two matrices 
are shown, D and W. D is an environmental dissimilarity matrix, 
describing how different are several environment types, A through 
D, with multiple samples represented for each environment type. 
Note that diagonals are empty because they are not used; see Eq. 1. 
Matrix W is the pairwise product of species weights p (Eq. 1). In this 
example, the focal species is perfectly specific to habitat A, which can 
be seen in p. Data corresponding to species detections are colored in 
red, and species absences in blue. The product D ◦W (=Dijpipj ) will 
be all zeroes for this example, because this example shows perfect 
specificity. Thus, the sum of that product, RQE, will be zero. If p had 
relatively small values instead of its zeroes, for example 0.25, those 
small values would still down-weight their corresponding larger 
differences in D and produce a signal of specificity, compared to 
random permutations of p which produce much higher RQE values
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highly sensitive to occupancy, which is the number of sam-
ples a species occupies. One would expect the strength 
of specificity to be lower when a species occupies more 
samples, because this means the species must occur in a 
broader range of habitat. However, SES counter-produc-
tively yields stronger specificity for more occupant species, 
and also for species with more even distributions. This is 
because SES is standardized using a distribution of values 
generated with permuted species weights. If all weights are 
similar (high evenness), the standard deviation of that dis-
tribution will be small, leading to a strong SES. SES is also 
undesirable because for a given species, it is tightly associ-
ated with that species’ p value (the probability of SES being 
as strong or stronger, despite the null hypothesis being 
true), enough so that a suggested remedy for yet other 
problems with SES is to use a probit transformed p value in 
its place [15].

We standardize RQE by leveraging the fact that for per-
fect specificity, empirical RQE ( RQEemp , Fig. 1) equals zero. 
Our statistic, which we simply call Spec, ranges from −1 
to 1, with 0 as the null hypothesis that species weights are 
randomly ordered with regard to sample identity. Similar 
to SES, RQEsim is a vector of RQE values calculated using 
random permutations of p. The distribution of RQEsim is 
used for calculating p values, and its central tendency is 
defined as Spec = 0 . This central tendency can be calcu-
lated several ways using our software, but the default is 
to use the mean of RQEsim since in our testing, mean and 
median showed highly concordant Spec results (Additional 
file 1: Fig. S1). The equation for Spec (Eq. 2) is a piecewise 
function, with the two parts corresponding to specificity 
and generality, respectively. In the case of specificity, Spec 
simply scales RQEemp relative to the center of RQEsim such 
that perfect specificity returns −1 , and the null hypothesis 
returns 0. In this case, “null hypothesis” refers to RQEemp 
being the expected value of RQEsim.

The case of generality is slightly more complicated, since 
there is no intuitive maximum theoretical  RQE  value. 
“Generality” in this context refers to species that encoun-
ter greater environmental heterogeneity than expected 
by chance. We find that maximum value computation-
ally, and standardize Spec as a proportion of that value 
(see Eq. 2). For each p there exists an optimized permuta-
tion that yields the highest possible RQE value, RQEmax . 
We use a genetic algorithm (GA) with Population Based 
Incremental Learning [16] to search permutations of p 
that create RQEmax . Our GA begins with a population 
of surrogate vectors initialized via random permutations 

(2)Spec =







RQEemp ≤ RQEsim,
RQEemp−RQEsim

RQEsim

RQEemp > RQEsim,
RQEemp−RQEsim

RQEmax−RQEsim

of p (default 150), and random swaps of p (a swap being 
the pairwise substitution of two values within the vec-
tor; default 150), and also p itself. Each generation, the 
GA calculates RQE for each vector in the population, 
then keeps some of the vectors with the highest RQE 
value (default 5). The next generation is composed of 
those kept vectors, and random swaps thereof until the 
total original population size is met (default 301). Our 
swapping algorithm can also use a stochastic number of 
swaps per vector per generation (including initialization), 
drawn at random from a user-defined set (default 1,1,2,3). 
In addition to swapping, mutation can be performed 
by crossover via the PMX algorithm [17], which is used 
because it incorporates both order and position of both 
parents, which is required for this problem. However, 
in our testing we found that crossover did not improve 
GA efficiency, so the default operation is not to per-
form PMX. The GA runs for a fixed number of genera-
tions (default 400), or until a number of generations have 
passed with no improvement (default 10). These param-
eters were chosen because they performed well on the 
data sets we analyze here, meaning that species reached 
the early termination condition.

Our GA is relatively computationally intensive, con-
suming the majority of computational time for a given 
specificity analysis even though it is only used for a 
minority of species. This is unlikely to be a concern on 
smaller data sets (i.e. a few hundred samples), but since 
many users may not be interested in “general” species, 
another option is to scale Spec for all species using the 
top half of Eq. 2 instead. This is considerably faster, and 
the user can either discard “general” species as uninter-
esting, or choose to interpret Spec > 0 within an ordinal 
framework (a brief analysis showed the results of this 
approach and those of the GA are strongly correlated; 
Additional file 1: Fig. S2).

Hypothesis testing
For the Spec calculation above, a p value may be calcu-
lated as the proportion of RQEsim values that are lower 
than RQEemp . The default operation of our software is to 
adjust p values calculated for different species from the 
same variable for multiple hypothesis testing by applying 
the Benjamini–Hochberg procedure [18].

Features of Spec
Spec captures signal of specificity to simulated vector, 
matrix, and phylogenetic data (Additional file 1: Figs. S3, 
S4). It is insensitive to species occupancy (Additional file 
1: Figs. S5, S6) and is insensitive to the number of sam-
ples within a data set (Additional file 1: Fig. S7). Spec is 
also scale-invariant, independently in regard to p and 
D inputs (Additional file  1: Fig.  S8). It is sensitive to 
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multimodality, and multimodal species distributions are 
still detected as exhibiting significant specificity by Spec 
(Additional file 1: Fig. S9).

Validation analyses
Species were simulated with varying levels of specificity 
by drawing from a normal distribution centered on an 
artificial “optimum” environmental location (e.g. eleva-
tion of 300 m). Varying specificities were achieved by 
widening the standard deviation of that distribution, or 
by mixing the normal distribution with varying propor-
tions of a uniform distribution. Multimodal specificity 
was simulated similarly by combining multiple distribu-
tions. Specificity of simulated species was analyzed using 
our software. Occupancy of simulated species was 
increased or decreased by randomly substituting simu-
lated weights with zero, and specificity was analyzed 
across an occupancy gradient using that approach. Real 
data (see Endophyte analysis, below) were randomly 
downsampled to test the sensitivity of Spec to sample 
size. Real data were also re-ordered to create simulated 
high-specificity species that use empirical distributions 
of weights, and then those simulated species were sub-
jected to a swapping algorithm that gradually introduced 
entropy into the species. The swapping algorithm swaps 
values from two randomly selected positions in p (Eq. 1). 
This was done recursively for 1000 generations (2 swaps 
per generation), saving p each time. Our software was 
then run on all vectors simulated this way.

Analysis of endophyte data
Data from Hawaiian foliar endophytic fungi [19] were 
downloaded from FigShare. These are illumina MiSeq 
data of the Internal Transcribed Spacer (ITS) region of 
fungal ribosomal RNA, from 760 samples collected from 
the leaves of native Hawaiian plants across five islands in 
the Hawaiian archipelago. This data set is also included 
in our R package. The features under investigation in 
this analysis were fungal OTUs. Data were transformed 
(“closed”) using total sum scaling, and fungal OTUs 
present in fewer than 10 samples were excluded from 
specificity analysis, because low-occupancy data can be 
unreliable (Additional file 1: Fig. S6). The remainder (416 
OTUs) were run through our software using default set-
tings except run in parallel using 20 CPU cores. Variables 
used in this analysis were NDVI (an index of vegetation 
density), elevation, evapotranspiration, rainfall, host 
plant phylogeny, and geographic distance between sam-
ple sites.

Analysis of Antarctic bacteria data
Data from Antarcic cryoconite hole bacteria [20] 
were obtained from the authors. Cryoconite holes are 

isolated melt pools on the surface of glaciers, caused by 
debris from nearby slopes falling onto the glacier, and 
then melting into its surface. These holes form discrete 
microbial communities that have been described as 
“natural microcosms” [21]. This data set comprises 90 
samples across three adjacent glaciers, and features are 
bacterial (16S rRNA) and eukaryal (18S rRNA) Amplicon 
Sequence Variants (ASVs; a type of OTU). Taxonomy 
was assigned to 18S rRNA ASVs using dada2 [14], and 
Bray–Curtis beta-diversity was calculated for only those 
ASVs that were determined to be algae. Analyses on 16S 
rRNA data were run and visualized as above, with vari-
ables N (Nitrogen), P (Phosphorus), pH, geographic dis-
tance, fungal Bray–Curtis beta-diversity (calculated from 
18s rDNA data), and algal beta-diversity. Bacterial asso-
ciations with individual glaciers (e.g. “ASV4 is found pre-
dominantly on Canada Glacier”) were computed using 
Dunn’s test [22], which is a nonparametric post-hoc test 
of difference in means.

Analysis of Human microbiome data
Data from Franzosa et al. [23] were downloaded as sup-
plemental data from the online version of the article. 
These data contain both gut bacterial and archaeal spe-
cies composition data as well as corresponding metab-
olomic data, collected from 220 adults with Crohn’s 
disease, ulcerative coliutis, or healthy controls. Data were 
downloaded in a processed state, after the following pro-
cedures had been completed: species composition data 
from this study were derived from metagenomic data, 
which were assigned taxonomy and grouped into OTUs 
using MetaPhlAn2 [24], and excluded samples that did 
not meet a 0.1% relative abundance threshold in at least 
5 samples. Metabolite data were measured using posi-
tive and negative ion mode LC/MS, and were reported 
as parts per million. Metabolite identities were assigned 
programatically, and were clustered into broad classes 
per the Human Metabolome Database [25]. We sub-
set the matrix of metabolome data by those classes, and 
used Euclidean distance to calculate the extent to which 
any two given samples differed in metabolomic com-
position within a given class (e.g. “how different is the 
composition of bile acids between sample A and sample 
B?”). Metabolite classes were excluded if they were totally 
absent in any sample, or if they contained fewer than 10 
metabolites, which left 83 classes. specificity was used 
to calculate Spec for microbial OTUs to each metabolite 
class distance matrix.

Analysis of Earth Microbiome Project data
Data from the Earth Microbiome Project (EMP) [26] 
were compiled and downloaded from Qiita [27]. These 
data comprise a global sampling of 16S rRNA ASVs 
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produced by multiple studies. All of the studies followed 
a uniform protocol for collection, processing, and analy-
sis of microbial data. A major component of the EMP is a 
rigid sample type ontology. The EMP Ontology (EMPO) 
was designed to categorically represent two main driv-
ers of bacterial community composition: host associa-
tion and salinity, for each sample that was collected. At 
the broadest level (EMPO1), samples were categorized as 
being host-associated or free living. At the intermediary 
level (EMPO2), samples were further divided into saline, 
non-saline, animal, plant, and fungus. The finest level 
(EMPO3) separated samples into 22 discrete substrate 
types (e.g. saline water, plant corpus, animal distal gut).

Because this data set is so large (28,842 samples and 
309,469 ASVs), ASVs were excluded that were not pre-
sent within at least 30 samples, samples were discarded 
if they had fewer than 5000 reads, and samples without 
ontological data were discarded (leaving 25,188 samples 
and 7014 ASVs). ASVs were excluded due to low occu-
pancy to avoid spurious ASVs and to avoid low-abun-
dance ASVs that do not perform well with Spec, and 
more importantly to keep computation size manageable 
for this massive data set. Samples were also discarded 
mainly due to computational concerns, with low-count 
samples being dropped first due to lower confidence in 
their proportional abundance calculations. The EMP 
ontology was transformed into a phylogeny using speci-
ficity’s “onto2nwk” function, which makes a cladogram 
within which all branch-lengths were set to 1. Specificity 
analysis was run using the ASV table and the ontological 
data. Database matches for individual species of interest 
were manually obtained using nucleotide BLAST [28] via 
the NCBI web portal, using the 16S rRNA sequence data-
base as reference.

Implementation
specificity was written in the R programming language, 
with some functions written in C++ using Rcpp [29]. 
The general format of the package follows standard R 
package structure [30]. Unit testing was done using test-
that [31]. specificity.shiny was written entirely in R, and 
uses the shiny [32] interactive web application frame-
work. Both packages are free and open source software, 
licensed under the Gnu Public License (GPL). Installation 
is easily done using the “install_github” function of the R 
package remotes [33]; see data “Availability  of data and 
materials” section for details.

Results and discussion
Hawaiian endophyte specificity analysis
We found that foliar endophytic fungi (FEF) from 
within the leaves of native Hawaiian plants exhibited 
strong and statistically significant specificity to several 

environmental variables (Fig.  2), including variables 
that were only weakly associated with FEF community 
composition [19]. For example, in the original paper, 
rainfall and elevation were relatively weak predictors of 
FEF phylogenetic beta-diversity, but many FEF species 
show strong specificity to those variables in the present 
analysis. This reflects a fundamental difference between 
community-centric approaches (e.g. FEF community 
composition) vs. species-centric approaches like (e.g. 
specificity analysis). The signal of individual species is 
lost when a community is aggregated into a beta-diversity 
matrix or similar, and consequentially individual species 
within the community may even respond to environmen-
tal variables orthogonally to the community as a whole. 
Species that were strongly specific to rainfall or elevation 
are examples of this.

We found that many FEF species have strong and sta-
tistically significant specificity to geographic location, 
which makes sense given the discrete spatial structure 
of the Hawaiian islands [34], and that these FEF com-
munities only are spatially structured up to distances of 
36 km [19]. But geographic specificity may be an artifact 
of specificity to other variables with strong geographic 
autocorrelation. For example, in Hawaii (and elsewhere), 
rainfall is a spatially structured phenomenon [35], with 
nearby areas experiencing dramatically different rainfall 
averages as a consequence of aspect and elevation. Thus, 

Fig. 2  Specificity of Hawaiian Foliar Endophytic Fungi. In this plot, the 
Spec values for 416 fungal species are plotted as violins for different 
variables. Since the number of species is the same for each variable, 
each violin has the same total area. Violin area is divided between 
species with statistically significant specificity (dark) versus species 
without (light)



Page 7 of 12Darcy et al. Environmental Microbiome           (2022) 17:34 	

species that have strong specificity to rainfall likely also 
have strong specificity to geography, which is true in our 
analysis. Indeed, the same is true for elevation, albeit to a 
lesser extent Fig. 2.

One of the fungi with strongest specificity in our anal-
ysis was of the genus Harknesia, with closest BLAST 
match in the NCBI nucleotide database to H. platyphyl-
lae, a eucalyptus pathogen. In our data set, this fungus 
was found on multiple hosts, including Metrosideros 
polymorpha, which is in the same family as eucalyptus 
(Myrtaceae). This Harknesia was found exclusively within 
the interior of Hawaii island, at elevations between 1700 
and 2000 m above sea level. Likely because of its strong 
geographic and elevational specificity, it also exhibited 
strong specificity to evapotranspiration, only being found 
in areas with 40–50 mm per year. Other fungi, such as 
an ASV most closely related to Phaesosphaeria papayae, 
exhibited strong specificity to elevation, evapotranspira-
tion, and vegetation (NDVI), but were found on multiple 
islands across the Hawaiian archipelago. Thus, while geo-
graphic specificity can appear as specificity to geographi-
cally autocorrelated variables, this is not always the case.

Notable generalists ( Spec > 0 ) in the endophyte data-
set include the genus Colletotrichum, a globally distrib-
uted genus of plant pathogenic and endophytic fungi. 
Almost all agricultural crops are impacted by members 
of Colletotrichum and it is considered a ‘top ten’ fungal 
pathogen for molecular plant pathological research [36]. 
Of the 9 ASVs identified as Colletotrichum, none showed 
specialization to plant host or geography. Recently, 
genomic studies of this genus have provided insight into 
the genetic mechanisms behind host generalism and the 
activation of latent pathogenicity [37, 38]. Low specificity 
to geography and host within this dataset indicates that 
asymptomatic Colletotrichum species are widespread 
within the native Hawaiian flora.

Antarctic glacier bacteria specificity analysis
Similar to the FEF analysis above, bacteria living in 
cryoconite holes (isolated melt pools) on glaciers in 
Antarctica’s Taylor Valley [20, 21] exhibited strongest 
specificity to geographic distance (Fig.  3). This data set 
spanned three glaciers: Canada, Taylor, and Common-
wealth, with equal sampling on each, but geographic 
distance accounts for distances within glaciers as well. 
The strong geographic specificity observed here reflects 
bacteria that are differentially abundant among glaciers, 
for example occupying only one or two of the three. The 
three glaciers, each flowing into a separate lake basin, 
are spaced along the 40-km length of the Taylor Valley, 
which stretches from the polar ice sheet to the coast. 
The cryoconite holes from the most inland glacier, Tay-
lor Glacier, have fewer nutrients than those nearer the 

coast, on Commonwealth Glacier [39]. The more inland 
cryoconite holes also have the lowest diversity of bacte-
ria, while the holes nearest the coast support the most 
diverse bacterial communities [21]. Many bacterial spe-
cies may therefore be specific to Commonwealth Glacier 
because it supports more species within its cryoconite 
holes than the other two glaciers. Besides the differences 

Fig. 3  Specificity of Antarctic cryoconite hole bacteria. A: Violin plot 
of specificity to sediment nitrogen concentration (N, red), sediment 
phosphorus concentration (P, blue), geographic distance (Geo, 
black), and algal community composition (Algae, green). Violins 
are scaled and shaded identically to those in Fig. 2. B: Pairwise Spec 
correlations. Correlation coefficients (r) for each pairwise comparison 
are shown in this subplot’s upper triangle, with mantel correlation 
coefficients ( rM ) shown below in gray. Mantel correlations describe 
the relationship between the variables themselves, e.g. “is algal 
community dissimilarity correlated with geographic distance”. The 
Spec correlations shown above in black are the correlation values for 
the data plotted in the lower triangle of this subplot
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in bacterial richness among the glaciers, the composition 
of the bacterial community turns over among glaciers, 
with different sequence variants dominating each glacier 
[20]. Biogeochemical differences within cryoconite holes 
among glaciers furthermore correspond with biogeo-
chemical gradients along the valley in the surrounding 
soils [39]. The difference in dominant bacterial taxa on 
each glacier may primarily reflect (1) differences in which 
bacteria dominate the soils surrounding each glacier and 
therefore disperse onto each glacier, (2) a response to 
biogeochemical conditions within cryoconite holes on 
the glacier, or (3) an interaction of the two. Experimental 
microcosms manipulating dispersal and nutrient avail-
ability could help to parse out dominant controls on geo-
graphic specificity of bacteria in the future.

Strong bacterial specificity to co-occuring algal com-
munities was expected, given the strong correlation 
between bacterial and eukaryal diversity previously 
observed in this supraglacial system [20] and elsewhere 
[40]. In our analysis, we found that specificity to algae 
was strongly negatively correlated with specificity to 
phosphorus ( r = −0.69 ); even though those two vari-
ables were not strongly correlated with each other 
( rM = −0.05 ). In other words, bacteria that are specific 
to algal community composition are not specific to sedi-
ment phosphorus concentration, and vice-versa. Using 
post-hoc tests, we found that bacteria with strong speci-
ficity to phosphorus concentration were predominantly 
associated with Taylor Glacier (but not exclusively), and 
that bacteria with strong specificity to algal community 
composition were predominantly found on Common-
wealth Glacier.

Similarly, the correlation in Spec between geographic 
distance and algae (Fig. 3B) highlights a feature of speci-
ficity analysis using Spec: when comparing specificity of 
the same features to two different variables, Spec is likely 
to be strongly correlated when the variables have a linear 
relationship. That linear relationship can be seen in the 
Mantel correlation between pairwise geographic distance 
and algal beta-diversity (rM = 0.52; Fig.  3B). But with 
variables that are weakly correlated, Spec may or may not 
be correlated between the variables. For example, differ-
ence in phosphorus concentration is not correlated with 
algal beta-diversity, but bacterial specificity to those vari-
ables is correlated (Fig. 3B).

Human gut microbiome metabolomic composition 
specificity
In this analysis, we asked whether bacteria and archaea 
in the human gut microbiome had specificity to paired 
metabolomic data. We computed bacterial specificity to 
compositional dissimilarity of 83 different metabolomic 
classes, and of those 83, microbes showed statistically 

significant specificity to only 25 (Fig.  4). The interpre-
tation of this analysis is similar to that of the specificity 
to algal community composition above. Specificity to 
a certain composition of paired data is a more abstract 
concept than specificity to elevation or even to the EMP 
ontology, but this type of specificity makes intuitive eco-
logical sense in the context of species-habitat association. 
Different microbes have different environmental needs, 
both within the human gut microbiome [41] and else-
where [42]. As such, those microbes can be expected to 
be found in environments that meet those needs. Simi-
larly, microbes in the human gut influence their environ-
ment [43], and as such can be expected to be found in 
environments that are changed by their presence. Since 
different microbes interact with different sorts of metab-
olites, differential specificity to metabolite classes is an 
expected outcome.

We found that more microbial species had signifi-
cant specificity to the composition of bile acids, alco-
hols, and derivatives, compared to other metabolomic 
classes (Fig.  4). This result is not surprising, since bile 
acids strongly interact with the gut microbiome, and are 
also created and manipulated by it [44]. Furthermore, 
the experimental design for these data contained sub-
jects with Crohn’s disease, with ulcerative coliutis, and 
healthy controls; and bile acids play a significant role in 
both Crohn’s disease and ulcerative colitis [45]. Microbes 
in this analysis could be specific to either of those two 
conditions and their plausibly co-occurring bile acids, 
alcohols, and derivatives, or to subclasses thereof. Com-
position of this metabolomic class did not strongly cor-
relate with composition of other metabolomic classes; 
its highest Mantel correlation was with Benzopyrans 
( rM = 0.46).

Species with the strongest specificity to bile acids 
etc. were Bacteroides plebeius, an unclassified Metha-
nobrevibacter species, Odoribacter laneus, Methano-
sphaera stadtmanae, and Ruminococcus callidus (all 
Spec < −0.60 ), although many other species showed 
significant specificity to this metabolomic class as 
well. B. plebeius was initially isolated on bile media 
[46], and was found to be associated with primary bile 
acids (as opposed to secondary bile acids) in patients 
with pediatric Crohn’s disease [47]. Methanobrevibac-
ter sp. (likely M. smithii) and Methanosphaera stadtma-
nae (both Archaea) are the predominant methanogens 
found in the human gut [48]. M. smithii is known to 
grow in the presence of bile salts [49], and may be a 
biomarker against inflammatory bowel disease (IBD) or 
for its remission [50]. The metabolomic class with the 
second most specific microbes was 1-acyl-sn-glycero-
3-phosphocholines (also called 2-lysolecithins). These 
compounds are derivatives of phosphatidylcholine, 
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which is used as a treatment for ulcerative colitis, but is 
also found naturally in some foods [51]. This finding is 
different than showing some bacterial species’ relative 
abundances correspond to the amount of phosphatidyl-
choline derivatives; instead this analysis focuses on the 
composition of phosphatidylcholine derivatives; albeit 
with the amount of those compounds as a component 
since Euclidean distance was used.

In our analysis, we asked which metabolomic classes 
had the most microbial species specific to them (Fig. 4). 
The results of this type of analysis are intended to mir-
ror common beta-diversity analyses used in microbial 
ecology, which ask to what extent variables explain 

differences in microbiome community structure [19, 
20, 52]. However, more complex questions can be asked 
of these data, using the results of specificity as a start-
ing point for feature set reduction or variable selection. 
For example, given an individual bacterial species of 
interest, the variables to which it is specific may be used 
in a random forests model to predict its presence. For 
the purpose of variable selection, specificity has very 
low computational resource requirements when used 
with only the top half of Eq.  2 (using option denom_
type=“sim_center”), and can be run on personal com-
puter hardware. This mode produces the same p values 
as the more comprehensive mode, and produces the 
same Spec values for any species with Spec < 0 . In 

Fig. 4  Count of bacterial and archaeal species that exhibited significant specificity to metabolomic composition in human gut microbiome data. 
Each bar represents the number of species (out of 201 total) that showed significant specificity to the composition of a given metabolomic class. 
Ordering of metabolomic classes on the horizontal axis is arbitrary
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addition to variable selection, specificity has applica-
tion in detecting species that may be common lab con-
taminants, as shown in our EMP analysis below.

Earth Microbiome Project (EMP) ontological specificity
As expected, the vast majority (6909/7014) of bacterial 
ASVs we analyzed within the EMP data set exhibited 
significant and strong specificity to the EMP ontology 
(Fig. 5). Given the distinct community-level differences in 
microbiomes across this ontology [26], it is not a surprise 
that most microbial species exhibit the same pattern. 
Instead, the species that buck this trend are of interest as 
potential cosmopolitan taxa, or possible bioinformatic 
failures. The sequence data obtained from the EMP data 
set are only 91 base-pairs in length, and even though they 
were clustered as exact sequence variants [14], it is pos-
sible that environmentally divergent ecotypes [53] were 
clustered together into the same ASV in this way.

One such highly distributed ASV was found in almost 
all EMP ontology categories except for saline, hypersa-
line, and non-saline water ( Spec = −0.13 , P = 0.35 ). It 
was 100% identical to multiple Actinomadura species, 
including A. algeriensis from Saharan soil [54], the human 
pathogen A. madurae [55], the root endophyte A. syzygii 
[56], A. maheshkhaliensis from mangrove rhizosphere 
soil [57], A. apis from honeybees [58], and others. These 
environment types span the EMP ontology, suggesting 
that the highly distributed ASV in question is a spurious 
combination of multiple Actinomadura ecotypes, each of 

which would likely have a strong specificity signal if ana-
lyzed independently. A counterexample is a strongly spe-
cific ASV, found exclusively in animal distal guts. It was 
100% identical to multiple species as well, although each 
was originally isolated from similar environments: Oxo-
bacter pfennigii (cattle rumen [59]), Proteiniclasticum 
ruminis (yak rumen [60]), and Lutispora thermophila 
(solid waste bioreactor [61]). These examples illustrate 
that like with every analysis, results can only be as good 
as input data. Users with very short-read marker gene 
data are likely already aware of this limitation, so we will 
not belabor the point.

Interactive data visualization
In addition to using our specificity R package to calcu-
late Spec and produce the figures shown above, we also 
used its companion package, specificity.shiny, to explore 
data and identify interesting features (Additional file  1: 
Fig. S10). With this tool, users can easily create interac-
tive visualizations from specificity analyses, and share 
them over the internet. specificity.shiny was used in the 
preparation of this manuscript, to share results between 
authors.

Conclusion
Our R package, specificity, enables specificity analy-
sis of microbiome data in the context of multiple vari-
able types. Here, we’ve shown examples of specificity to 
geographic variables like elevation and rainfall (Fig.  2), 

Fig. 5  A EMP sample type ontology visualized as a cladogram. B Distribution of Spec values for ontological specificity of bacteria and archaea in 
the EMP data set. Within the cladogram, all brach-lengths are set to 1 for calculation of a cophenetic distance matrix, which is used as D when 
calculating Spec (Eqs. 1, 2). Numbers in parentheses are sample counts. An overwhelming majority of microbes within the EMP data set showed 
statistically significant specificity to sample type ontology (black), which was expected given the previously reported strong signal in clustering of 
community composition by sample type [26]. Very few microbes did not show significant specificity (gray)
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host phylogenetic specificity (Fig.  2), specificity to co-
occurring microbial community structure (Fig.  3) and 
metabolomic structure (Fig. 4), and specificity to sample 
type ontology (Fig. 5). Our validation analyses show that 
our statistic, Spec, performs intuitively and is sensitive to 
specificity in both empirical and simulated data (Addi-
tional file 1: Figs. S3–S9). Our companion package, speci-
ficity.shiny, can be used to explore results and collaborate 
on specificity analyses (Additional file 1: Fig. S10), which 
was done by the authors on the four example analyses we 
presented here. Both specificity and specificity.shiny are 
available from the authors’ GitHub repository, along with 
installation instructions and a tutorial vignette.
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