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1  | INTRODUC TION

Foliar endophytic fungi (FEF), defined here as all fungi living within 
leaf tissue but not causing any outward signs of disease (sensu; 
Stone, Bacon, & White, 2000), are effectively invisible and represent 
a “hotspot” of undescribed fungal diversity (Arnold & Lutzoni, 2007; 
Porras-Alfaro & Bayman, 2011). Indeed, a large portion of the vast 
undescribed fungi on earth (Blackwell, 2011) are presumed to live 
cryptic lifestyles in association with plant hosts (Hawksworth & 

Rossman, 1997), particularly in the tropics where plant diversity 
is highest. Due to their cryptic lifestyles and high species richness 
(Blackwell, Hibbett, Taylor, & Spatafora, 2006; Rodriguez, White, 
Arnold, & Redman, 2009), many questions remain about which fac-
tors determine how FEF are distributed throughout nature.

Although all available evidence suggests that most eudicot FEF 
are horizontally transmitted and not inherited via seed (Bayman, 
Angulo-Sandoval, Báez-Ortiz, & Lodge, 1998), it is unclear which fac-
tors structure FEF community composition, and how those factors 
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Abstract
A phylogenetically diverse array of fungi live within healthy leaf tissue of dicotyledon-
ous plants. Many studies have examined these endophytes within a single plant spe-
cies and/or at small spatial scales, but landscape-scale variables that determine their 
community composition are not well understood, either across geographic space, 
across climatic conditions, or in the context of host plant phylogeny. Here, we evalu-
ate the contributions of these variables to endophyte beta diversity using a survey of 
foliar endophytic fungi in native Hawaiian dicots sampled across the Hawaiian archi-
pelago. We used Illumina technology to sequence fungal ITS1 amplicons to charac-
terize foliar endophyte communities across five islands and 80 host plant genera. We 
found that communities of foliar endophytic fungi showed strong geographic struc-
turing between distances of 7 and 36 km. Endophyte community structure was most 
strongly associated with host plant phylogeny and evapotranspiration, and was also 
significantly associated with NDVI, elevation and solar radiation. Additionally, our 
bipartite network analysis revealed that the five islands we sampled each harboured 
significantly specialized endophyte communities. These results demonstrate how the 
interaction of factors at large and small spatial and phylogenetic scales shapes fungal 
symbiont communities.
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rank in their relative importance. Previous studies that have exam-
ined foliar fungal communities in this ecological and biogeographic 
context have noted several different drivers of community composi-
tion and biogeography. Temperature (Coince et al., 2014), geographic 
distance (U'Ren, Lutzoni, Miadlikowska, Laetsch, & Arnold, 2012), el-
evation and rainfall (Zimmerman & Vitousek, 2012), and vegetation 
density/urbanization (Massimo et al., 2015; Unterseher, Petzold, & 
Schnittler, 2012; Vincent, Weiblen, & May, 2016) are all putatively 
important variables for FEF community composition. We might 
attribute this diversity of results to idiosyncrasies of experimental 
design in which specific variables or host taxa were held constant 
to address focused hypotheses, and to the simultaneous influence 
of many possible factors that may not all be analysed in any given 
study.

In fact, the bulk of FEF community research is represented 
by studies focusing on one or two specific host plants (Felber 
et al., 2016; González-Teuber, 2016; Kato, Fukasawa, & Seiwa, 2017; 
Mejía et al., 2014; Oono, Lefèvre, Simha, & Lutzoni, 2015; 
Polonio et al., 2015; Saucedo-García, Anaya, Espinosa-García, & 
González, 2014; Zimmerman & Vitousek, 2012), often to address 
hypotheses about how distance or climate impacts composi-
tion. Still, studies that have surveyed FEF or other leaf-associated 
fungi among multiple plant species have found that host identity 
strongly determines fungal composition (Huang, Devan, U'Ren, 
Furr, & Arnold, 2016; Kembel & Mueller, 2014; Massimo et al., 2015; 
Unterseher et al., 2012; U'Ren & Arnold, 2016; Vincent et al., 2016). 
Despite examples of studies at either broad phylogenetic scales or 
broad spatial scales, comparatively few studies combine these into 
a single analytical framework (but see U'Ren et al., 2012, 2019). By 
simultaneously examining a wide diversity of hosts over a wide di-
versity of habitats at the landscape scale, we might explicitly address 

how host identity interacts with the abiotic environment to struc-
ture FEF community composition, and the extent to which FEF are 
geographically restricted either by distance or by island barriers.

Here, we use the breadth of environmental and evolutionary 
diversity in the Hawaiian Archipelago to determine which factors 
structure FEF beta diversity in native Hawaiian dicots. Specifically, 
we test the hypotheses that elevation, rainfall and host plant phy-
logeny are the strongest predictors of FEF community composition 
of native plants across Hawaii (Figure 1). We include additional po-
tential explanatory variables in our analysis such as evapotranspira-
tion (Kivlin, Hawkes, & Treseder, 2011; Lewis, Ravel, Naffaa, Astier, 
& Charmet, 1997) and geographic distance (Higgins, Arnold, Coley, 
& Kursar, 2014), known to be important determinants in other fungal 
systems. We found that FEF community structure was most strongly 
associated with host plant phylogeny and evapotranspiration, and 
was also significantly associated with NDVI, elevation and solar ra-
diation. Spatial structuring of FEF communities was strongest at dis-
tances between 7 and 36 km.

2  | MATERIAL S AND METHODS

2.1 | Sample collection

General sampling locations were selected to maximize habitat, 
phylogenetic and spatial diversity. Location selection prioritized 
access, a reasonable permitting process, and the known presence 
of ten or more native plant species. Sample collection took place 
between July 2014 and October 2016. Access was the most limit-
ing factor in comparatively fewer sampling locations on Molokai 
and Maui Islands. We chose not to collect plants that are federally 

F I G U R E  1   Map of sample locations 
across the Hawaiian Archipelago. Samples 
were collected from the five major 
islands in the Hawaiian Archipelago: 
Hawai'i, Maui, Moloka'i, O'ahu and Kaua'i. 
Sampling was most dense on Hawai'i and 
on O'ahu Islands, where accessibility was 
easiest. Our sampling strategy was to use 
elevational transects where possible, in 
order to capture elevational and climatic 
variation. Elevations in figure legend are 
metres above sea level. This is visible in 
the transects on Hawai'i, Moloka'i, Kaua'i 
and O'ahu, which run orthogonally to 
the topographic lines (white). Transects 
are less pronounced on Maui because of 
limited accessibility [Colour figure can be 
viewed at wileyonlinelibrary.com]
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listed as threatened or endangered. At each location, the first oc-
currence of an apparently healthy, naturally recruited individual 
was selected for sampling. We only sampled native plants. Because 
some native species are comparatively common, and others rare, 
we limited our sampling to a single individual from each naturally 
occurring nonlisted dicot at each location (e.g. a trail or a park), 
because we did not wish to confound our data with uneven spa-
tial heterogeneity among subsampled plants. In most cases, more 
than a single individual was collected per island since it occurred 
at more than one location. Numerous mature sun leaves were 
collected such that when combined, they covered a surface area 
roughly equivalent to two adult-sized hands. Life form and stature 
differed markedly across our sampled plants, so it was difficult to 
precisely standardize the height at which leaves were collected. 
When possible, leaves from trees and shrubs were collected at eye 
level and from at least four aspects of the tree canopy. We tar-
geted dicots because they have horizontally transmitted FEF (com-
pared to many vertically transmitted FEF in some monocots). Not 
all host plant genera were collected at every sample location. The 
three most common genera we collected (Metrosideros, n = 119; 
Leptecophylla, n = 89; and Vaccinium, n = 147) were each collected 
across elevations ranging from sea level to over 2,000 m.a.s.l. The 
location of each plant was recorded with a GPS, and plants were 
positively identified in the field and/or vouchered for subsequent 
identification (vouchers deposited at Joseph F. Rock Herbarium at 
the University of Hawaii, Manoa; HAW). Leaves were refrigerated 
until subsequent processing (within 72 hr of collection). A total of 
1,099 samples were collected in this way, although not all were 
used in the analyses presented here (see Section 3).

We surface-sterilized leaves to exclude fungi present on leaf 
surfaces. After rinsing in water, forty leaf discs were extracted per 
individual host by punching leaves with a sterile standard paper sin-
gle hole punch (approximately 0.5 cm diameter). Hole punches were 
sterilized by washing with 70% ethanol and flamed between uses. For 
plants with very small leaves, entire leaves were used such that the 
area of those leaves was the same as the area of leaf discs. Leaf discs 
(or aforementioned collections of small leaves) were then placed into 
loose-leaf tea bags that were subsequently stapled shut, submerged 
in 1% NaOCl for 2 min, then 70% EtOH for 2 min, followed by two 
rinses with sterile water for 2 min each. The rinse water was included 
in extraction controls to verify sterility of surface water.

2.2 | DNA isolation

Ten leaf discs per DNA extraction were placed in MP Biomedicals 
Lysing Matrix A tubes (MP Biomedicals) containing DNA isolation so-
lutions from the Mo BIO PowerPlant Pro DNA Isolation Kit (Solution 
PD1, Solution PD2, Phenolic Separation Solution and RNase A 
Solution; Mo Bio, a subsidiary of QIAGEN). Leaf discs were homog-
enized using a Mini-Beadbeater 24 (BioSpec Inc. OK) at 3,000 oscil-
lations per minute for 2 min. Lysate was centrifuged at 16,000× g for 
2 min and transferred to individual wells of a Mo BIO PowerPlant Pro 

DNA 96-well Isolation Kit for subsequent extraction following the 
manufacturer's protocol.

2.3 | PCR amplification and illumina library 
preparation

We amplified the ITS1 region of the ribosomal cistron using fungal-
specific primers ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and 
ITS2 (5′-GCTGCGTTCTTCATCGATGC-3′), along with Illumina adapt-
ers and Golay barcodes incorporating dual indexing, using previously 
published thermal cycling parameters (Smith & Peay, 2014). PCRs 
were carried out in 25 μl reactions using the KAPA3G Plant PCR Kit 
(Kapa Biosystems), 9 μl of DNA extract (concentration not meas-
ured) and 0.2 μM each of the forward and reverse primers. Negative 
PCR and extraction controls were included. PCR products were 
purified and normalized using just-a-plate 96 PCR Purification and 
Normalization Kit (Charm Biotech). Normalized PCR products were 
pooled and concentrated using a streptavidin magnetic bead solu-
tion. Pooled PCR products were sequenced on three separate reac-
tions in order of processing completion, using the 2 × 300 paired-end 
(PE) sequencing protocol on an Illumina MiSeq sequencing platform 
(Illumina Inc.). We did not include controls for sequencing run vari-
ation, and we acknowledge this as a limitation of our study. We also 
did not quantify DNA concentration of extracts, but the amplifica-
tion-normalization experimental design allows for characterization 
of microbial communities even from inefficient DNA extractions. 
We do not think this is a significant source of bias in our analysis, 
since negative controls (which contained too little DNA to amplify) 
produced a paucity of sequence data when compared to samples, 
almost all of which produced many thousands of sequence reads. 
Still, it is possible that variation in extraction efficiency could result 
in biased alpha diversity estimates. Due to low sequencing success, 
negative controls were not accounted for in sample processing.

2.4 | DNA sequence data processing and 
bioinformatics

QIIME v1.9.1 (Caporaso et al., 2010) was used to demultiplex raw 
DNA sequence data into individual fastq files for each sample. 
Although paired-end sequencing was used, only the R1 read (cor-
responding to primer ITS1f) was used for downstream analysis, since 
sequencing quality of reverse reads was generally poor after the first 
150 nucleotides. VSEARCH v2.14.2 (Rognes, Flouri, Nichols, Quince, 
& Mahé, 2016) was used to discard reads with an average quality 
score below 25 (Illumina Q + 33 format); then, ITSx v1.1 (Bengtsson-
Palme et al., 2013) was used to extract the ITS1 region from quality-
filtered files. Sequence data were filtered by average score rather 
than maximum score, because nucleotides with poor-quality scores 
that were not within the ITS1 region could disqualify sequences that 
would be otherwise high-quality within the ITS1 region. In order to 
eliminate variability in sequences caused by sequencing and PCR 
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error, ITSx-processed sequences were de-noised using DADA2 
v1.12 (Callahan et al., 2016) using the authors' recommended set-
tings (maximum expected errors = 2; maximum Ns = 0). Separate 
DADA2 error rate models were used for each sequencing run in 
our data set, although the models appeared qualitatively similar. 
De-noised sequences were then clustered into 95% OTUs using 
VSEARCH (Rognes et al., 2016).

Taxonomy was assigned to each OTU using the UNITE data-
base (v7) (Nilsson, 2011) and QIIME's assign_taxonomy.py script 
(Caporaso et al., 2010) with the BLAST method using the default 
maximum e-value of 0.001. OTUs not belonging to kingdom Fungi 
were discarded. Our OTU table was then rarefied (i.e. randomly 
downsampled) to 1,500 sequences per sample, discarding samples 
with fewer than 1,500 sequences or samples for which host plants 
could not be satisfactorily identified. We chose the depth of 1,500 
sequences as a compromise between a depth at which almost all 
samples had plateaued on our collector's curves (Figure S1) and a 
level that resulted in the fewest discarded samples. Filtering and 
rarefaction were performed in R v3.5.0 (R Core Team, 2014) using 
custom software written by the authors.

Ghost Tree v2019 (Fouquier et al., 2016) was used to construct 
a phylogenetic tree for the remaining OTUs. Briefly, Ghost Tree al-
lows phylogenetic trees to be made from ITS1 sequence data, which 
are often unalignable at high taxonomic ranks. This is done using 
a backbone tree created with the 18S rRNA gene, and then, ITS1 
sequences are used to refine the tree at a phylogenetic scale where 
those sequences can be meaningfully aligned (e.g. genus level). In 
an analysis of real and simulated ITS1 data, Fouquier et al. (2016) 
found that using UniFrac, distances calculated using a Ghost Tree 
were better explained by environmental variables in ANOSIM mod-
els than were distances calculated using phylogeny-independent 
metrics. This method was also successfully used to study differences 
in fungal community composition in the human infant microbiome 
(Ward et al., 2018) and in a study of FEF in grass as well (Lumibao 
et al., 2019). We used a Ghost Tree that was made using the SILVA 
database (v132) for the 18S backbone, and the UNITE database (v8) 
was used for ITS refinement. Tips of the Ghost Tree were renamed 
with OTU identifiers where OTUs were assigned taxonomy to a 
UNITE entry in the Ghost Tree. In cases where multiple OTUs were 
assigned to the same UNITE entry, a polytomy was created to fit 
those OTUs into the tree. This method may exclude novel taxa that 
are not present in the UNITE reference database, and this is a limita-
tion of all studies using such a database, including this one.

The Ghost Tree was used with weighted UniFrac (Lozupone & 
Knight, 2005) (hereafter referred to as “UniFrac”) to construct a 
beta diversity distance matrix for the samples. UniFrac was used 
because it downweights additional branch length contributed by 
slight intragenomic variation among tandem repeats. Even if an in-
dividual putative fungal species contains several OTUs, each will 
only contribute a negligible amount of branch length to a sample, 
as compared to nonphylogenetic metrics (e.g. Bray–Curtis), which 
would consider those OTUs as different as any other pair. Because 
UniFrac considers the shared phylogenetic branch lengths between 

two communities, it is robust to the case where an OTU is only found 
within one sample, and is similarly robust to the case where samples 
do not share any OTUs, which can be problematic for other com-
munity dissimilarity metrics where overall diversity is much higher 
than within-sample diversity. This is important for our analysis of 
FEF communities, because many previous studies have shown that 
FEF are hyperdiverse even at local scales (e.g. within one host or 
within one hundred metres; Jumpponen & Jones, 2009, 2010; 
Zimmerman & Vitousek, 2012). We suspected that this large amount 
of diversity would result in many pairs of samples that shared few 
or zero OTUs, which would result in an inflation of 1-values (maxi-
mum dissimilarity) when using nonphylogenetic beta diversity met-
rics such as Bray–Curtis or Jaccard community dissimilarity. Indeed, 
this same issue has been discussed by previous users of generalized 
dissimilarity modelling (GDM) as a saturation of maximal dissimilar-
ities and was resolved by using phylogenetic beta diversity metrics 
(Warren, Cardillo, Rosauer, & Bolnick, 2014). We confirmed that this 
was indeed the case and that UniFrac distance values were normally 
distributed but Bray–Curtis dissimilarities were severely 1-inflated 
(Figure S2). For this reason, we used the UniFrac distance matrix for 
the remainder of our analysis.

2.5 | Spatiotemporal data

Using sample geographic coordinates and collection dates, environ-
mental and climatic data for each sample were extracted from GIS 
layers using the R packages “raster” v2.9 (Hijmans et al., 2014) and 
“rgdal” v1.4 (Pebesma, Rowlingson, & Rogerbivandnhhno, 2012). 
Data were extracted from rasters generated for the same month 
that samples were collected (except for elevation data). Table S1 
shows the sources of each GIS layer. Many explanatory variables 
were obtained from the Rainfall of Hawai'i and Evapotranspiration 
of Hawai'i websites (Giambelluca et al., 2013, 2014), and eleva-
tion data were obtained using the USGS EarthExplorer online 
tool (http://earth explo rer.usgs.gov), courtesy of NASA EOSDIS 
Land Processes Distributed Active Archive Center and the United 
States Geological Survey's Earth Resources Observation and 
Science Center. These explanatory variables were chosen either 
because previous studies of Hawaiian FEF had identified them 
as important (elevation, rainfall; Zimmerman & Vitousek, 2012), 
because they were significant drivers of Hawaiian plant composi-
tion (slope, aspect), or because they made intuitive sense in the 
context of fungi that live within leaves (solar radiation, transpira-
tion, evapotranspiration, leaf area index, NDVI). Slope and aspect 
of each sampling location were calculated from elevation raster 
data using the terrain function in “raster.” Data for aspect (the di-
rection a sampling location faces) were converted into a distance 
matrix using the smallest arc-difference between any two given 
aspects. This was done because Euclidean distance is unsuitable 
for a measurement like aspect, where 355° is closer to 1° than it 
is to 340°. All variables are mean monthly values. NDVI (normal-
ized difference vegetation index) is an index calculated from the 

http://earthexplorer.usgs.gov
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amount of infrared light reflected by plants, which is normalized 
using multiple wavelengths of visible light. This allows for discrim-
ination between habitat types that are deferentially vegetated. 
Similarly, leaf area index is a measure of surface area of leaves 
(one-sided) per unit area of ground, and while it does not discrimi-
nate between different types of vegetation as does NDVI, unlike 
NDVI it measures the density of leaf surface area (habitat for FEF).

2.6 | Host plant phylogeny

A distance matrix of host plant phylogenetic distances was created 
using the angiosperm phylogeny of Qian and Jin (2016). This distance 
matrix was made because the modelling method we use here (GDM, 
below) can accommodate distance matrices as explanatory varia-
bles, allowing for a phylogenetic distance matrix of hosts to be used 
instead of a simplified data structure such as a principal components 
vector or an array of categorical taxon identities. For each pairwise 
comparison between two samples, pairwise host plant phylogenetic 
distance was calculated as the mean cophenetic (branch length) 
distance between members of the plant genera that were sampled, 
using the function cophenetic.phylo in the R package “ape” v5.2 
(Paradis & Schliep, 2019). In cases where host plant genus was not 
included in the phylogeny, the genus was substituted for the most 
closely related genus available. Four genera were substituted in this 
way out of 80 total genera: Labordia → Logania, Touchardia → Urtica, 
Waltheria → Hermannia, Nothocestrum → Withania. We chose to re-
solve host plants at the genus level because species-level taxonomy 
can be unstable for recent adaptive radiations, and many Hawaiian 
species-level phylogenies are not resolved (Ziegler, 2002).

2.7 | Geospatial analyses

In order to test and visualize the spatial structuring of FEF beta di-
versity, we constructed a geographic semivariogram (Bachmaier & 
Backes, 2008) in R using a matrix of log10-transformed geographic 
distances between samples, and the UniFrac distance matrix of 
FEF community differences between samples. Semivariograms are 
useful tools in spatial ecology because they visualize the extent to 
which beta diversity exhibits spatial connectedness. They can show 
at what geographic range community composition is homogeneous 
and at what range community composition is structured by distance. 
See Robeson et al. (2011) for a thorough discussion of the applica-
bility of semivariograms in this context, models that can be fitted 
to them and what hypotheses they can be used to test. Distance 
classes in the semivariogram were constructed using a sliding win-
dow method, where each class shared two-thirds of its points with 
the previous class (Darcy, King, Gendron, & Schmidt, 2017). A lo-
gistic curve was fit to semivariance values and mean geographic 
distances within semivariogram distance classes using the Nelder–
Mead algorithm, minimizing the sum of squared differences in beta 
diversity semivariance. The curve's derivative was then used to find 

the geographic distance class that accounts for 99% of geographic 
distance where beta diversity is spatially autocorrelated. Since the 
derivative function of a logistic curve is a unimodal distribution, the 
99% intervals of that function yield three distance classes for the 
logistic function: the first plateau, the class corresponding to 99% 
of the change in slope for the curve and the second plateau. Mantel 
correlations were then performed on data within each of the three 
resulting distance classes.

Generalized dissimilarity modelling (Ferrier, Manion, Elith, & 
Richardson, 2007) was used to model FEF beta diversity based on 
climatic factors (Table S1), geographic distance, host plant phylogeny 
and DNA sequencing run. The goal of this analysis was to discover 
the relative importances of environmental variables on FEF commu-
nity composition, and at what scales the variables explain FEF com-
munity composition (e.g. are small changes in a variable important, 
or only large changes). GDM is a form of nonlinear matrix regression 
that is well-suited to statistical questions involving dissimilarity ma-
trices (e.g. our UniFrac distance matrix, host plant cophenetic dis-
tance matrix, geographic distance matrix and aspect arc-difference 
matrix). Unlike pairwise Mantel tests or PERMANOVA, which make 
use of similar data, GDM can quantify the relative importances of 
environmental and geographic variables on community dissimilar-
ity, even when the functional relationship between community dis-
similarity and the environment is nonlinear (Fitzpatrick et al., 2013; 
Warren et al., 2014). Furthermore, GDM is effective because it mod-
els community dissimilarity associated with a given predictor vari-
able while holding all other predictor variables constant (Fitzpatrick 
et al., 2013; Landesman, Nelson, & Fitzpatrick, 2014). For example, 
this enables GDM to model the effect of elevation while account-
ing for the effect of host plant phylogenetic distance. Because our 
data were generated using three separate DNA sequencing runs, we 
included “run” as a categorical variable in our model by creating a 
distance matrix where samples from the same run had distance = 0, 
and samples of different runs had distance = 1, as recommended by 
GDM's creators (Ferrier et al., 2007).

We used backward elimination as implemented in the “gdm” 
v1.3.11 R package to build a model, and then to simplify the model 
by removing minimally predictive variables. We began this process 
with a GDM model excluding variables that were correlated with an-
other variable in the analysis at rho > 0.70 (Spearman correlation). 
Leaf area index, wet canopy evaporation, temperature, cloud fre-
quency and relative humidity were removed this way (Figure S3). 
Log-transformed geographic distance between samples, host plant 
phylogenetic distance, sequencing run and aspect arc-difference 
matrix were included as predictor matrices in the GDM, with FEF 
UniFrac distance as the response matrix. We then used GDM to test 
each variable within the model for significance using a permutation 
test. During this iterative process, the variable with the highest P-
value was eliminated, and then, the model was recalculated. This 
process was repeated until all remaining variables were statistically 
significant (p < .05). Sequencing run and transpiration were elimi-
nated this way. The final GDM model was also analysed using Bray–
Curtis dissimilarities instead of UniFrac distances, to illustrate how 
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the severe 1-inflation observed with Bray–Curtis was an impediment 
to model fitting.

Principal coordinates analysis (PCoA) was used to validate 
GDM results using an alternate statistical approach. PCoA vec-
tors were calculated from the UniFrac distance matrix using the 
R package “vegan” v2.5 (Oksanen et al., 2016). Principal coordi-
nates of neighbour matrices (PCNM; Borcard & Legendre, 2002) 
was used on geographic and host phylogenetic distance matrices, 
for dimensionality reduction and to account for nonlinear features 
within those data. The same data used in our final GDM, except 
with geography and host represented by their first six PCNM vec-
tors, were fit to FEF PCoA and tested using the “envfit” function 
(Oksanen et al., 2016).

2.8 | FEF-island specialization analysis

Bipartite network analysis was used to test the extent to which 
each island (Figure 1) harboured specific FEF (FEF-island spe-
cialization). The d′ (“d prime”) statistic was calculated for each 
island using the OTU table using the “bipartite” package v2.11 
in R (Dormann, Gruber, & Fruend, 2008). d′ is a measure of net-
work specialization that ranges from zero to one, where zero is 
perfect cosmopolitanism (all species are evenly shared among is-
lands) and one is perfect specialization (each species is specific to 
only one island). d′ is calculated using a contingency matrix where 
each row is a unique lower-level group (island) and each column 
is a unique higher-level group (OTU), but in our OTU table each 
island contains multiple samples, so the number of observations 
per island is not consistent. To remedy this, we calculated d′ by 
aggregating all samples from the same island into one large sam-
ple (column sums), rarefied this aggregated table using the same 
depth to which samples were rarefied above (1,500 observations), 
then calculated d′ values. Empirical d′ values were compared to 
null d′ values generated with the Vázquez null model, which is a 
fixed-connectance null model for bipartite networks (Vázquez 
et al., 2007), implemented as the vaznull function of “bipartite.” 
The procedure of aggregating, calculating an empirical d′, and cal-
culating a Vázquez null d′ was repeated 1,000 times in order to 
obtain bootstrapped distributions of empirical and null d′ values 
for each island. Statistical significance for d′ values for each is-
land was tested using Welch's unequal variance t test to compare 
empirical and island null d′ values. This test was 2-tailed, since d′ 
could be significantly lower than the null distribution indicating 
cosmopolitanism, or significantly higher indicating specialization.

A similar procedure was applied to host plant genera in place of 
fungal OTUs (plant-island specialization). Since host is only observed 
once per sample, d′ was not bootstrapped. This was done in order to 
evaluate the extent to which our selection of host plants was signifi-
cantly specialized to islands.

To evaluate whether FEF-island specialization could be at-
tributed to island-specific plant selections, we also tested FEF-
island specialization under the constraint of a generically identical 

plant community (at the genus level) for each island. The same pro-
cedure for analysing FEF-island specialization above was carried 
out, but during the aggregation step of each bootstrap, random 
samples for each island belonging to a fixed plant community were 
chosen to the exclusion of all others. This fixed community was 
defined by the plant identification overlap among all five islands. 
All d′ values calculated this way were calculated from the same 
plant community from each island. The analysis of these d′ values 
was calculated as above.

3  | RESULTS

3.1 | Sequence data

Samples were collected across a wide range of climatic conditions 
(Figure 2), representative of the distributions of those conditions 
in Hawai'i. Our data set comprised 896 samples that passed qual-
ity-filtering and ITS1 extraction, consisting of 7,002 OTUs. After 
nonfungal OTUs were discarded, samples were rarefied to 1,500 
sequences per sample, resulting in 3,458 OTUs across 760 samples. 
Of those samples, 417 were from Hawai'i, 84 from Kaua'i, 56 from 
Maui, 72 from Moloka'i and 131 from O'ahu. Mean richness (number 
of OTUs observed) per sample was 27.3 with a standard deviation 
of 18.9 (Figure S1). Geographic and botanical information for each 
sample used in our analysis is available as Figure S4 and Table S2, 
and is available from our FigShare repository (see Data Availability 
Statement Section). Of 27 sequencing negative controls included 
in the study, 13 resulted in sequence data, with an average of 123 
reads and 2.2 OTUs per sample. This sequencing depth was less than 
1% of that found in the average biological sample (12,860). Because 
we were unable to trace the source of these contaminants (whether 
tag switching, cross-contamination or reagent contamination) and 
because they amplified so poorly compared to biological samples, 
we did not attempt to adjust our data set to account for these.

F I G U R E  2   Ranges and distributions of explanatory variables. 
In this figure, each variable's distribution across 722 samples is 
shown as a smoothed density curve between its range (numbers 
to left and right of curves, height of curve is relative frequency 
of observation). Units for range values are shown in Table S1. 
Each variable included in our analysis covered a wide range of 
environmental heterogeneity
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3.2 | Geospatial results

Our semivariogram analysis showed that FEF beta diversity is spa-
tially structured between 7.6 and 36.3 km, where it reaches its au-
tocorrelation distance (Figure 3). This plateau and subsequent noise 
in beta diversity semivariance occurs when FEF beta diversity is no 
longer spatially autocorrelated (Robeson et al., 2011). In our analysis, 
this occurs at geographic distances of 36.3 km. Within the distance 
class where beta diversity was spatially autocorrelated, rM (Mantel 
correlation) was 0.16. In the other two distance classes, rM was closer 
to zero as expected (Figure 3).

After GDM backward elimination, many variables were left as 
statistically significant: all p-values were the minimum possible 
p-value given that GDM's backward elimination was run using 50 
permutations. This means that GDM always predicted a smaller pro-
portion of FEF beta diversity when any given predictor variable was 
permuted, except for sequencing run and transpiration which were 
eliminated this way. Host plant phylogenetic distance and evapo-
transpiration explained the most compositional dissimilarity in FEF 

communities, as given by their GDM coefficients (the maximum 
height of their splines) (Ferrier et al., 2007; Fitzpatrick et al., 2013) 
which were 0.090 and 0.078, respectively (Figure 4). These values 
indicate the relative importances of variables in the model. The 
shape of GDM i-splines reflects FEF community turnover over 
the range of differences in a predictor variable, and both host and 
evapotranspiration were related to FEF beta diversity over their 
entire ranges. Sample collection date was related to FEF beta diver-
sity only at temporally proximate values, while solar radiation and 
NDVI were related to FEF beta diversity only at large differences 
(Figure 4). Although all variables shown in Figure 4 are statistically 
significant and the whole model fits nicely to the data with rela-
tively symmetrical residuals (Figure 4, top), GDM was only able to 
predict 6% of FEF beta diversity. In contrast to the GDM fit using 
the UniFrac distance matrix, GDM run with Bray–Curtis dissimilar-
ity fit poorly as a result of severe 1-inflation of distances (Figures 
S2 and S5).

Principal coordinates analysis (PCoA) was used to confirm GDM 
results using an alternative statistical approach. Similar to GDM, host 

F I G U R E  3   Semivariogram and Mantel correlations of foliar endophytic fungi beta diversity. This semivariogram (Bachmaier & 
Backes, 2008) was constructed using geographic distance classes, each containing the same number of points and each sharing two-thirds of 
its points with the previous class. Dots indicate the mean geographic distance within each class, and horizontal lines indicate its geographic 
range. The black curve is a logistic function fit to the data. Increasing semivariance indicates spatial autocorrelation. The lag in spatial 
autocorrelation before 7.6 km (first dashed line) indicates a lack of spatial structuring and that samples at that range may be drawn from the 
same community. The plateau and subsequent noise at 36.3 km (second dashed line) is called the “autocorrelation distance” and is a typical 
feature in semivariogram analysis (King et al., 2010; Robeson et al., 2011). It indicates the distance after which spatial structuring becomes 
noisy or random, and geographic space is no longer a meaningful variable for community structure. The plot at bottom shows the data used 
to create the semivariogram. It also shows the Mantel correlation (rM) of the three distance classes, as determined by 99% intervals of the 
logistic fit's derivative
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(PCNM3 of host phylogenetic distance matrix) had the strongest re-
lationship with FEF beta diversity with an R2 of .106 (p = .001), and 
evapotranspiration had the second strongest relationship with an R2 
of 0.073 (p = .001). A table of PCoA R2 and p-values is available as 
Table S3.

3.3 | Bipartite network analysis

Each of the five islands we sampled showed a statistically significant 
(p < .001, Welch's unequal variance t test) pattern of FEF speciali-
zation (Figure 5), since FEF-island d′ values were higher than those 
generated using a null model (null d′ values centred around d′ = 0.25 
for each island). Specialization in this case means that each island 
harbours more FEF OTUs that are uniquely associated with that is-
land than would be expected by chance. We found that our sampling 
of host plant genera was significantly specialized to island as well 
(Figure S6); however, plant-island d′ values were not significantly 
related to OTU-island d′ values (linear regression, p = .45). We also 
analysed FEF-island specialization while keeping plant taxonomy 
identical across islands by randomly drawing a pre-set plant com-
munity from each island in each permutation of the d′ analysis. This 
analysis was done to remove the effect of plant community on FEF-
island specialization. We still found significant specialization for all 
islands, although in this analysis all five islands had very similar d′ 
values (Figure S7).

3.4 | Endophyte taxonomic composition

At the class level, FEF composition was consistent across islands and 
dominated by Dothideomycetes and Sordariomycetes (members of 
the Pezizomycotina) (Figure S8). 12.14% of endophyte OTUs were 
unidentified at the class level (corresponding to 11.29% of rarefied 
sequence data), perhaps reflective of Hawaii's isolation and compar-
ative paucity of taxonomic research.

4  | DISCUSSION

The most striking pattern we found in our analysis of FEF communi-
ties in native Hawaiian plants was that evapotranspiration, a com-
paratively coarse measure of plant community traits at the landscape 
level, is meaningfully predictive for the community composition of 
microscopic fungi living within plant leaves. These results suggest 
that aside from environmental or host determinants, endophyte 
community composition results from a microbial “neighbourhood,” 
in addition to the traits of individual hosts. Evapotranspiration was 
the second-most important variable in our analysis in terms of com-
munity composition (Figure 4); and it was more important in the 
model than elevation, which was measured at a much finer spa-
tial resolution (Table S1). This was supported by our principal co-
ordinates analysis as well. This result makes the interpretation of 
our hypothesis regarding the effect of climate on FEF community 

F I G U R E  4   Model fit and coefficients 
for generalized dissimilarity modelling 
(GDM) model of foliar endophytic 
fungi (FEF) community dissimilarity. 
The observed community dissimilarity 
(UniFrac distance) between pairwise 
samples exhibited a linear but noisy 
relationship with the community 
dissimilarity predicted by the GDM model 
(top), which roughly corresponded to a 
1:1 line (dashed line). In the bottom plot, 
GDM i-splines are shown for statistically 
significant predictor variables. Spline 
height indicates the relative importances 
of predictor variables, and the spline's 
slope corresponds to the rate of change 
in FEF compositional dissimilarity over 
the range of pairwise dissimilarities 
within the variable. Host phylogeny and 
evapotranspiration were the strongest 
predictor variables in our analysis. These 
two variables were also the strongest 
correlates of beta diversity principal 
coordinates vectors in our confirmatory 
PCoA [Colour figure can be viewed at 
wileyonlinelibrary.com]
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composition surprising, since previous studies (Coince et al., 2014; 
Zimmerman & Vitousek, 2012) suggested that temperature, eleva-
tion and rainfall would be the most important factors structuring 
community composition instead, and evapotranspiration has not 
been previously considered as an important variable for FEF. While 
elevation (tightly correlated with temperature), host plant phylog-
eny, rainfall and Julian date were significant explanatory variables 
in our GDM analysis, each of their effects was smaller than that of 
evapotranspiration (Figure 4).

Evapotranspiration encompasses both plant transpiration and 
the evaporation of water from soil and other surfaces, and both 
soil water content and stomatal conductance affect leaf interior 
moisture (Lambers, Chapin, & Pons, 2008). As such, evapotranspi-
ration could drive FEF community composition by changing the leaf 
interior habitat, and thereby select for different FEF communities 
at high vs. low evapotranspiration. Indeed, evapotranspiration is 
strongly correlated with the moisture content of leaves (Lambers 
et al., 2008; Tardieu, Lafarge, & Simonneau, 1996). Alternatively, if 
plant stomata are open for longer periods, this may affect probabil-
ities of different FEF successfully entering the leaf interior. To our 
knowledge, no studies have measured fungal community response 

to evapotranspiration, although associations between endophytic 
fungi and transpiration (a component of evapotranspiration) have 
been strong. In a grass system spanning 15 European countries, the 
response of endophytic fungi to a transpiration gradient was sub-
stantial (Lewis et al., 1997). Association between native FEF and 
transpiration has also been observed in Theobroma cacao (Arnold 
& Engelbrecht, 2007). In light of previous studies suggesting a link 
between fungal endophytes and evapotranspiration (Arnold & 
Engelbrecht, 2007; Kivlin et al., 2011; Lewis et al., 1997), our find-
ing that evapotranspiration is a significant predictor of differences 
between FEF communities makes sense, and future physiological 
experiments at the scale of individual leaves might shine light on the 
nature of this interaction.

The association we found between FEF beta diversity and host 
plant phylogenetic distance was the most important predictor in 
our GDM model. Previous studies of FEF have surveyed multiple 
host species and have found that host identity is commonly asso-
ciated with fungal endophyte community composition (Liu, Zhao, 
Wang, & Chen, 2019; U'Ren et al., 2012; Vincent et al., 2016), even 
among closely related hosts (Christian et al., 2020), so our result was 
mostly expected. But unlike most previous studies that found host 
associations of FEF (although see Davis & Shaw, 2008), we used 
the phylogeny of host plants as an explanatory variable in place of 
their identity. Under the hypothesis that FEF communities are struc-
tured by host phylogenetic difference, more phylogenetically similar 
plants are expected to harbour similar FEF communities, and con-
versely, phylogenetically distant plants are expected to harbour less 
similar FEF communities. Following this hypothesis, in our analysis 
the GDM i-spline for host steadily increased across the whole range 
of differences in host phylogenetic distance (Figure 4), although 
the abrupt increase at low distances indicates rapid turnover in FEF 
community composition even with small changes in host phyloge-
netic distance. The significant association we observed from the 
genus level all the way up to higher taxonomic ranks agrees with a 
study of broad-scale host associations among tropical foliar fungal 
epiphytes, in which family-level host taxonomy is most predictive 
(Kembel & Mueller, 2014).

This relationship between FEF beta diversity and host plant 
phylogeny could either mean that FEF, host plants or both exhibit 
a degree phylogenetic niche conservatism (Wiens et al., 2010). 
For example, FEF community preference may be phylogenetically 
conserved among closely related plant species, or perhaps host 
preference is conserved among closely related FEF. Patterns of phy-
losymbiosis are widespread throughout natural symbiotic systems, 
including plant–pathogen systems. However, phylogenetic signal can 
be lost in the presence of environmental factors that simultaneously 
impact symbiotic community composition (Brooks, Kohl, Brucker, 
van Opstal, & Bordenstein, 2016). Furthermore, in our analysis, host 
plant phylogeny may have been a more robust predictor of FEF com-
munity dissimilarity if our host plants had been classified to species 
level instead of genus level; however, species-level phylogenies are 
not fully resolved for many Hawaiian lineages, particularly those that 
have undergone rapid and recent adaptive radiations.

F I G U R E  5   Foliar endophytic fungi (FEF) specialization of each 
island. d′ is a measure of how unique or cosmopolitan are the OTUs 
found on that island. In this violin plot, distributions shown as filled 
violins with black borders are bootstrapped empirical d′ values for 
each island. Unfilled distributions with a grey border are from the 
Vázquez null model, which is a fixed-connectance null model for 
bipartite networks. Welch's unequal variance t tests show that each 
island's FEF community is significantly specialized as compared to 
the null, meaning that FEF OTUs are more specific to their island of 
origin than expected by chance
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NDVI (normalized difference vegetation index) was a significant 
predictor of FEF community dissimilarity in our data set, suggesting 
that areas that are differentially vegetated harbour different com-
munities of FEF. This difference may be related to the total per cent 
land cover of vegetation, which is a component of NDVI (Purevdorj, 
Tateishi, Ishiyama, & Honda, 1998), or related to the type of plant 
cover, that is different plant community compositions (Lunetta, 
Knight, Ediriwickrema, Lyon, & Worthy, 2006), which is also encom-
passed within the NDVI metric. Indeed, foliar fungal communities 
potentially respond to both land cover and habitat type in the host 
plant Quercus macrocarpa (Jumpponen & Jones, 2009, 2010). This 
association between FEF and NDVI means that FEF conservation ef-
forts would likely need to consider differential vegetation cover and 
urbanization at the landscape scale. The pixel size for the NDVI data 
we used was 250 m2 (Table S1), meaning that the value at any given 
location is an aggregate value for a large plant community. Thus, the 
proportion of FEF community dissimilarity that was significantly ex-
plained by NDVI in our analysis is related to the density and com-
position neighbouring plant communities and not specifically the 
host individual, a dynamic suggested in other studies as well (Kato 
et al., 2017).

The other statistically significant drivers of FEF community 
composition (Figure 4) were mostly expected, particularly elevation 
(statistically significant in both GDM analysis and PCoA). This is sim-
ilar to a result reported by Zimmerman and Vitousek (2012), who 
used PERMANOVA to test the effects of rainfall, elevation and sub-
strate age on FEF beta diversity patterns in Metrosideros polymorpha 
('Ō'hia) trees. They found that elevation explained approximately 
17% of compositional dissimilarity between FEF communities, vary-
ing slightly depending on which dissimilarity metric was used. That 
study also took place in Hawai'i, and the area sampled overlaps 
partially with the area of Hawai'i Island that we sampled (Figure 1). 
Zimmerman and Vitousek (2012) also found a large effect of rain-
fall, which was also statistically significant in our GDM analysis. 
Rainfall is also a significant driver of FEF community structure in 
grasses (Giauque & Hawkes, 2013), although in a larger continen-
tal-scale analysis of cultured FEF isolates, rainfall was not a strong 
predictor of FEF diversity (U'Ren et al., 2012). Solar radiation was 
also a significant variable in our GDM analysis and PCoA and was 
much more important in our GDM model than either elevation or 
rainfall. Indeed, previous research has shown that light levels are im-
portant for FEF colonization, likely because different intensities of 
light exposure can affect the chemical makeup of the phyllosphere 
(Bahnweg et al., 2005).

Geographic distance was of middling importance in our GDM 
analysis, especially since importance in GDM is calculated with all 
other variables accounted for. However, in our semivariogram and 
subsequent Mantel correlogram analyses, we found that FEF beta 
diversity is significantly spatially structured by geographic dis-
tance, especially between geographic distances of 7.6 and 36.3 km 
(Figure 3). Communities are not strongly spatially autocorrelated 
at distance of less than 7.6 km and reach their autocorrelation 
range at 36.3 km. The lag before 7.6 km indicates that species are 

sampled from the same local community before that point (Robeson 
et al., 2011). After the curve plateaus around 36.3 km, FEF beta di-
versity reaches its “autocorrelation range,” after which autocorrela-
tion becomes noisy. At distances greater than the autocorrelation 
range, communities are not spatially autocorrelated; that is, com-
munity composition is no longer a function of geographic distance 
(King et al., 2010; Robeson et al., 2011). From our semivariogram, we 
can qualitatively see that there may be spatial structuring at greater 
distances as well, perhaps up to 100 km, indicating that community 
structure is autocorrelated within islands, but not between them. 
Said another way, this indicates that the microbial “neighbourhood” 
for FEF is at the subisland scale. The Hawaiian Islands' volcanic ori-
gins might partially account for these patterns. Easterly trade winds 
and orographic lift drive much of the precipitation patterns in the 
archipelago, such that each island is neatly divided between com-
paratively hot and dry leeward, and cool wet windward sides. Nearly 
all island flora reflect this division; therefore, it is unsurprising to find 
spatial autocorrelation at within, rather than among, island scales.

However, even though beta diversity may not be spatially au-
tocorrelated at the interisland scale, individual species may still be 
unique to islands. Said another way, islands may harbour unique 
cohorts of FEF in addition to cosmopolitan FEF, even though geo-
graphic space has little or no bearing on beta diversity at that scale. 
We tested this and found a significant effect of FEF specialization to 
islands (Figure 5). Our bipartite network analysis showed that each 
island harbours a significant composition of fungi that are more re-
gionally specialized than would be expected due to chance alone. 
Beta diversity tools like GDM and our semivariogram are very differ-
ent analytical methods than bipartite network analysis, and answer 
different questions. Our GDM analysis focused on patterns in FEF 
beta diversity, which is aggregate dissimilarity of community com-
position and does not take into account patterns at the OTU level, 
especially because of UniFrac's downweighting of phylogenetically 
similar OTUs. Our bipartite network analysis instead focused on the 
distribution of FEF OTUs within vs. among islands, testing the ex-
tent to which a given island harbours OTUs that are exclusive to that 
island.

We presumed that the likeliest drivers of FEF-island specializa-
tion are differences in habitat, dispersal limitation among islands or 
differences in host availability (whether due to plant distributions 
or sampling bias). Since our beta diversity analysis revealed a signif-
icant effect of host plant phylogeny, because Hawaiian island floras 
are disharmonious (Ziegler, 2002), and because this disharmony 
was reflected in our sampling, differences in sampled plant hosts 
might account for specialization patterns. We used two separate 
analyses to evaluate whether this could account for specialization 
patterns alone. A bipartite analysis of plant-island specialization 
(Figure S6) indicated that in our experimental design, hosts are in-
deed specific to islands. However, we expected that if plant-island 
specialization bias within our experimental design was driving the 
FEF-island specialization pattern we observed, d′ values from the 
two would correlate strongly. There was no significant relationship 
between plant-island specialization and FEF-island specialization, 
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and plant-island d′ values were much lower (less specialized) than 
those observed for OTUs. Further, when we restricted our analyses 
to only those plant genera that were sampled on all islands, the FEF 
specialization patterns remained.

How dispersal limitation shapes FEF-island specialization is an 
open question worthy of future research. There is some evidence 
for restricted gene flow among populations of a putative native 
mushroom, Rhodocollybia laulaha (Keirle, Avis, Feldheim, Hemmes, 
& Mueller, 2011) among islands, although these patterns might 
also be explained by selection. Similarly, the lag in our semivario-
gram (Figure 3) could be the distance at which dispersal limitation 
begins to structure FEF communities, or simply the distance at 
which unmeasured environmental variables begin to vary enough 
to structure FEF communities. A long-term study of aerobiota at 
the summit of Hawaii's peak, Mauna Loa, found evidence of likely 
long-distance dispersal via air mass (Tipton et al., 2019), although 
it is unclear how frequent and ecologically relevant such events 
are to endophyte systems. The epidemiology and rapid interisland 
spread of fungal pathogens such as rapid 'Ō'hia death (Ceratocystis 
spp.) or 'Ō'hia rust (Puccinia psidii) suggest that at least some spe-
cies are capable of crossing ocean channels, whether naturally or 
with the unwitting help of humans. Of course, not all species are 
so easily dispersed, and the requisite and complex interaction be-
tween FEF, host and habitat likely reinforces island specialization 
patterns.

In summary, our analysis highlights that the various factors con-
tributing to Hawaiian FEF community structure do so at the land-
scape scale. We analysed these important plant symbionts across 
both a large geographic scale (Figure 1) and a large host phylogenetic 
scale (80 plant genera), while using high-throughput sequencing to 
thoroughly inventory FEF community composition. We examined 
the effects of climate, geographic distance and host identity using 
this system and, for the most part, found them to be strong pre-
dictors of differences in FEF communities between samples—even 
when the measurements were taken at relatively coarse resolution 
(Table S1). We found that elevation (Zimmerman & Vitousek, 2012), 
host plant phylogenetic difference (Cobian, Egan, & Amend, 2019; 
Huang et al., 2016; Kembel & Mueller, 2014; Massimo et al., 2015; 
Unterseher et al., 2012), geographic distance (U'Ren et al., 2012) and 
habitat type (Jumpponen & Jones, 2009, 2010; Kato et al., 2017) hy-
potheses were robust in our analysis at these large scales.
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