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a b s t r a c t

We introduce an open source software utility to extract the highly variable ITS1 and ITS2

subregions from fungal nuclear ITS sequences, the region of choice for environmental

sampling and molecular identification of fungi. Inclusion of parts of the neighbouring, very

conserved, ribosomal genes in the sequence identification process regularly leads to dis-

torted results. The utility is available for UNIX-type operating systems, including MacOS X,

and processes about 1 000 sequences per minute.

ª 2010 Elsevier Ltd and The British Mycological Society. All rights reserved.

* Corresponding author. Department of Plant and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden.
Tel.: þ46 31 786 2623; fax: þ46 31 786 2560.

E-mail address: henrik.nilsson@dpes.gu.se (R.H. Nilsson).

ava i lab le at www.sc ienced i rec t . com

journa l homepage : www.e lsev ier . com/ loca te / funeco

1754-5048/$ e see front matter ª 2010 Elsevier Ltd and The British Mycological Society. All rights reserved.
doi:10.1016/j.funeco.2010.05.002

f u n g a l e c o l o g y x x x ( 2 0 1 0 ) 1e4

Please cite this article in press as: Nilsson RH, et al., An open source software package for automated extraction of ITS1 and ITS2
from fungal ITS sequences for use in high-throughput community assays and molecular ecology, Fungal Ecology (2010),
doi:10.1016/j.funeco.2010.05.002

http://dx.doi.org/10.1016/j.funeco.2010.05.002
mailto:henrik.nilsson@dpes.gu.se
http://www.elsevier.com/locate/funeco
http://dx.doi.org/10.1016/j.funeco.2010.05.002
http://dx.doi.org/10.1016/j.funeco.2010.05.002


Fungi form a ubiquitous group of heterotrophic organisms

with a largely subterranean or otherwise inconspicuous life
cycle (Blackwell et al. 2006). The poor correspondence between
aboveground fruit bodies and the diversity of the fungal
community below ground (or in the substrate) has precluded
a detailed understanding of the species composition of fungal
communities, although the access to DNA sequence data is
starting to change this (Peay et al. 2008; Hibbett et al. 2009). The
most commonly sequenced genetic marker for molecular
identification of fungi from environmental samples is the
internal transcribed spacer (ITS ) region of the nuclear ribo-
somal repeat unit (Ryberg et al. 2009; Abarenkov et al. 2010). It

is cumbersome to attain the sequence depth needed for
reasonably accurate views of the underlying community, but
emerging sequencing technologies such as massively parallel
(“454”) pyrosequencing (Margulies et al. 2005) address this and
shift the focus from sequence depth to sequence processing
and quality control (Huse et al. 2007; Shendure & Ji 2008;
Galand et al. 2009; Kunin et al. 2010).

Massively parallel pyrosequencing generates reads shorter
than those obtained by traditional Sanger sequencing. As
a result, sequencing the ITS region in full (450e650þ bp.) is
presently impossible. The ITS offers three potential target

subregions for which numerous PCR primers are readily
available: ITS1, 5.8S, and ITS2 (Fig 1). The ITS1 is highly variable
and about 180-base pairs (bp.) in length. The ITS2 is nearly as
variable although slightly shorter (w170 bp.); the lengths of
ITS1 and ITS2 do, however, vary substantially among taxa
(Nilsson et al. 2008). The intercalary 5.8S gene (w160 bp.) is very
conserved and can be aligned across the fungal phyla. The
flanking ribosomal genes nuclear small subunit (nSSU/18S )
upstream of ITS1 and nuclear large subunit (nLSU/28S ) down-
stream of ITS2 make good primer anchors (for ITS1 and ITS2,
respectively), with the intercalary 5.8S serving as the second

anchor region (cf. Bueé et al. 2009; Jumpponen & Jones 2009).
Depending on how far into these genes the primer sites are,
however, the residual portions of the genes left in the
ITS sequence may skew sequence similarity searches
involving, e.g., BLAST (Altschul et al. 1997). These extra
sequence segments, many times more conserved than ITS1
and ITS2, will alwaysfindmatches in the sequencedatabasese

even when ITS1 and ITS2 do note and so will invariably add to

the length of the BLAST alignment. This makes automated
interpretation of the BLAST results problematic and regularly
has the effect that a different sequence or even species is
presented as the bestmatch than if ITS1 or ITS2 alone had been
analyzed (Bruns & Shefferson 2004). This was observed for
11 %of the 86000 ITS-basedBLAST searches studied byNilsson
et al. (2009). Sequence clustering into hypothetically conspe-
cific taxonomic units may similarly be distorted by these
segments.

Though conserved, the nSSU and nLSU are variable enough
that they cannot be located and deleted using regular

expressions or pattern matching for a wide selection of fungi.
They can be removed manually given a multiple alignment
and a primer chart or an annotated reference alignment such
as the one provided by Hibbett et al. (1995), but this becomes
unfeasible as datasets grow. The present study introduces
a software utility to extract the ITS1 and ITS2 from large fungal
ITS datasets. The software accounts for partial sequence
data e such as when only nSSU and half of ITS1 are available e

as well as input sequences in the reverse complementary
direction. It is available at http://www.emerencia.org/Funga-
lITSextractor.html (Supplementary material 1) for UNIX-

based operating systems, including MacOS X.
The software is written in Perl and processes FASTA format

(Pearson & Lipman 1988) input sequences sequentially. ITS1
and ITS2 are located using long (30e50 bp.) and short
(18e25 bp.) Hidden Markov models (HMMs) computed in the
HMMER package (v. 2; Eddy 1998) from inclusive alignments of
the nSSU (30 region; Tehler et al. 2003), 5.8S (50 and 30 regions;
Nilsson et al. 2008), and nLSU (50 region; James et al. 2006). The
query sequence is compared to the long HMMs for each of
nSSU, 5.8S (50 and 30), and nLSU using the HMMER package. If
the boundaries of these genes can be detected, ITS1 and ITS2

are extracted from the sequence based on those positions. If
not, an attempt is made to locate the genes using the shorter
HMMs to account for sequences with shorter included
conserved regions. Partial extractions are performed if one or
more, but not all, genes are detected; if, for instance, only the
50 end of 5.8S is found, the ITS1 is extracted as the region
upstream of 5.8S. A set of FASTA files comprises the core
output of the software; these include all ITS1 and ITS2
sequences extracted from the input sequences and all
sequences for which neither subregion could be found. The
program outputs detailed information to the screen, including
a summary of the extraction process for each input sequence

and the absolute position of each of the subregions in the
sequence. The feature to highlight sequences for which none
of the flanking regions could be found is of particular rele-
vance to massively parallel pyrosequencing, where artificial
sequences consisting entirely of noise are sometimes
produced and may pass filters based solely on quality scores
(Quince et al. 2009). Furthermore, provided that the query
sequences feature the 50 region of 5.8S, reverse complemen-
tary sequences are indicated as such and given in the correct
direction.

The software performs better the more of nSSU/5.8S/nLSU

are available (up to about 50 bp.). We found that the use of
HMMs down to ca. 18 bp. in size (matching as little as 18 bp. of
the distal part of any of the genes) still provide satisfactory

Fig 1 e Overview of the fungal ITS region. The spacer ITS1 is
found between the 30 end of the nSSU (18S ) gene and the 50

end of the 5.8S gene, and the ITS2 is found between the 30

end of 5.8S and the 50 end of the nLSU (28S ) gene. The long
bars above the genes indicate the location of the long HMM
for that particular gene, and the short bars indicate the
location of the short HMMs. All HMMs are positioned in
such a way as to cover the very end and the very beginning
of the respective genes. The individual lengths of the
HMMs were adjusted to reflect the position of the most
commonly used primers.
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matcheswith few false positives. Any HMMs shorter than that

are difficult to construct if they still are to be used for a wide
selection of fungi. Sequences of poor read quality may pose
a problem to the software insofar as the region to which the
HMM is compared is obfuscated by incorrect or ambiguous
nucleotides. The software may also perform suboptimally on
taxa with very deviant rRNA genes e notably the genera
Cantharellus and Tulasnella as well as some basal lineages such
as the Microsporidia (Feibelman et al. 1994; James et al. 2006;
Moncalvo et al. 2006; Taylor & McCormick 2008) e and taxa
with large insertions or deletions in the regions targeted by
the HMMs (cf. Shinohara et al. 1996; Bhattacharya et al. 2000;

Holst-Jensen et al. 2004). To seek to modify general fungal
HMMs to also include these deviant lineagesmay detract from
the usefulness of the HMMs for the non-deviant lineages;
instead, such taxa should be addressed using tailored HMMs.

We evaluated the software on 1500 ITS sequences from all
fungal phyla in GenBank (Benson et al. 2008) and from the
Quercus phyllosphere pyrosequencing data of Jumpponen &
Jones (2009) (Supplementary material 2). All sequences were
compared with Hibbett et al. (1995) to identify the subregions,
and the results were juxtaposed with those obtained from the
software. The respective subregions were identified and

extracted successfully for 1462 (97.5 %) of the sequences. The 38
cases where the extraction of either subregion failed were
explained by poor sequence data (17 instances), the failure of
theHMMsto identify the regionsdue to thedeviantnatureof the
taxon under scrutiny (11 instances), and false negatives (6
instances). In addition 4 (0.3 %) false positives (incorrect
extractions) were observed. The user may be able to enhance
theperformanceof thesoftware further by tailoring theHMMER
E-values (Eddy 1998) to suit any specific property of the target
sequences, such as taxonomic affiliation. The very nature of
environmental sequencing does, however speak against

static assumptions about which taxa are present in samples at
hand.
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